Simulation and optimisation of a submarine ROV

with AADL

Ivan Kovacevié+, Jure Antunovié+, Tonko Kovacevié+, Laurent Lemarchand*, Frank Singhoff*

+University of Split, Croatia; email: kovacevic.ivan0120@gmail.com, jure.antunovic6@gmail.com,

tkovacev@oss.unist.hr

*Lab-STICC UMR 6285 - University of Brest, France; email: {lemarch,singhoff}@univ-brest.fr

Abstract

Keywords: template, journal, Ada.
1 Introduction

When designing underwater robots, reliable simulation is
essential to master the complexity and cost of physical
trials. Most existing simulations rely on ad-hoc code and
are rarely integrated with design methods.

This project bridges that gap by combining model-driven
engineering (MDE) techniques with runtime environments
like Gazebo and ArduSub SITL. We use the Architecture
Analysis & Design Language (AADL) to model the
real-time structure and behavior of a Remotely Operated
Vehicle (ROV), and then generate implementation code
using Ocarina [8].

This code is connected to a Gazebo simulation through a
C++ plugin, enabling verification of sensor data, actuator
responses, and mission performance in a virtual underwater
environment.

2 Background on AADL

AADL (Architecture Analysis & Design Language) is a
standardized modeling language developed by SAE
(AS55006), used for specifying the software and hardware
architecture of embedded real-time systems.

It enables developers to describe components like devices,
processors, buses, and their interactions, including timing
constraints and behavioral properties.

Tools such as OSATE and AADLInspector support
modeling, analysis, and verification. For this project,
AADLInspector was used for model validation, and
Ocarina was used to generate C code for execution.

Through AADL, the ROV's architecture—including
sensors, actuators, and control units—was modularly
specified and enriched with realistic dispatch protocols,
allowing accurate simulation of periodic threads and
system scheduling behavior in a real-time context.

3 ROV AADL modeling
3.1 ROV description

A concise description of the ROV would define it as an
underwater vehicle propelled by five thrusters, designed to
access areas that were previously difficult to reach in
submerged environments. The ROV is powered by two
Bosch batteries and equipped with a range of sensors used
for monitoring both environmental conditions and the
vehicle’s own performance. An overview of the ROV’s
general design is shown in Figure 1.

ARK
(QGroundControl)

FY

v

4—{ PixHawk4

Fower
distribution
board

v ¢' ¢

‘ESC_1 ‘ ‘ESC_2| ‘ESC_3| |ESC_4‘ |ESC_5‘

3 o3 v

‘THR1 HTHRE | ‘THRB | | THR4 ‘ |THR5 ‘

Picture 1: ROV model

3.2 AADL model of the ROV

The ROV modeled using AADL represents a modular,
real-time system architecture designed for underwater
simulation in environments such as PX4 SITL, Gazebo, and
QGroundControl. It mirrors the structural organization and
operational behavior of a real-world Unmanned
Underwater Vehicle (UUV).

Volume X, Number Y, 2025

The model is organized into three interdependent layers:
sensing, processing, and actuation. The sensing layer
includes a magnetometer and a pressure sensor, providing
orientation and depth data, respectively. These are
represented as AADL device components with data output
ports, sampled at realistic update rates (e.g., 100 Hz for the
magnetometer).

The processing layer consists of a central processing unit
defined as a process that hosts a dedicated controller
process, which includes a stabilization_thread. This thread
receives sensor inputs and computes control signals for the
actuators.

The actuation layer receives data of the type ControlCmd,
which is defined as a structured data type. In a complete
implementation, this data would be used to control multiple
thrusters. This design supports a model-based approach,
enabling seamless integration into both simulation and
real-world deployment environments.

Each key component - controllers, CPU, sensors, and data
types - is encapsulated within its own dedicated AADL file,
fostering modularity and facilitating reuse across the
system. Additionally, the model is fully compatible with the
Ocarina toolchain, which translates the AADL architecture
into C source code. This integration ensures deterministic
behavior throughout the simulation loop.

Figure 2 below shows the general structure of the
simulation, without including all the individual

sensors and actuators.

s - ~
rover.impl

external® J central*
oftware”

Picture 2: AADL model of ROV structure

4 Simulation with Gazebo

The AADL-modeled ROV system follows a model-driven
development process integrated with real-time simulation.
The system architecture—comprising sensors, actuators,
and control logic—is specified in AADL and compiled into

Template for Ada User Journal

C code using Ocarina. This code represents the functional
behavior and software structure of the ROV.

To interface with the simulation environment, the generated
C code is wrapped in a C++ wrapper, allowing it to be
embedded into a custom Gazebo plugin. This plugin runs
within Gazebos simulation loop and provides access to
simulated sensor data and actuator control.

In Gazebo, the ROV is simulated with realistic underwater
physics and equipped with virtual sensors like GPS, IMU,
etc. As the simulation runs, sensor inputs are passed to the
plugin, which executes the control logic and returns
actuator commands—thus creating a real-time feedback
loop.

The system is further integrated with ArduSub SITL,
which interprets the plugin's outputs and communicates
with QGroundControl (QGC) over a MAVLink. This
setup allows developers to monitor missions, receive
telemetry, and control the ROV from QGC as if it were a
physical vehicle.

This workflow bridges formal modeling and simulation,
enabling early validation, traceability, and consistent
deployment behavior. The workflow can be seen in Figure
3:

QGC
Manual commands
mission uploads, Telemetry
mode switches
ARDUSUB

Actuator commands,

estimated state
Updated thruster state,

position/velocity overmrides

Control output
Sensor data

OCARINA C++ WRAPPER

(G CODE) GAZEBO

Translated sensor data
(to AADL model port types)

Picture 3: Logic behind Gazebo plugin
Here is the explanation of the data flow in the graph:

First the sensor data is generated by the simulated
environment and passed to the wrapper. (Sensor data)

Secondly the wrapper converts Gazebo sensor data into a
format matching AADL port types expected by the
Ocarina-generated C code. (Translated sensor data)

Thirdly, the AADL system model, implemented as C code,
computes control outputs which are passed back to the
wrapper. (Control output)

After that the wrapper sends the control outputs (e.g.,
desired thrust values, position or velocity corrections) to

Volume X, Number Y, 2025

Ada User Journal

ArduSub as overrides or direct control inputs. (Updated
thruster state, position/velocity overrides)

ArduSub sends low-level actuator commands to Gazebo's
simulated vehicle, along with estimated state outputs (e.g.,
attitude, velocity) for visualization and synchronization.
(Actuator commands, estimated state)

ArduSub sends telemetry data (vehicle state, sensor
readings, etc.) back to QGC for real-time monitoring and
display. (Telemetry)

At last, QGC sends user input or mission instructions to
ArduSub, including manual joystick commands,
pre-defined mission plans, or changes in flight mode.
(Manual commands, mission uploads, mode switches)

The functionality of the C++ wrapper can be seen
underneath in Figure 4:

ARDUSUB Sensors
(CONTROL Data
AND STATE) Gt WRAPPER types CCARNAC
(TRAN?LATOR CODE
Commands MIDDLEWARE) bl s AL
oAE80 Cone
(SIM DATA) P

Status
Picture 4: C++ wrapper logic
The explanation of the data flow in the graph is as follows:

First, ArduSub sends estimated state and control-related
sensor data (e.g., velocity, orientation) to the wrapper.
(Sensors)

Secondly, Gazebo provides simulated sensor data (e.g.,
GPS, IMU, pressure) to the wrapper. (Status)

Then afterwards, the wrapper translates ArduSub and
Gazebo data into AADL-typed inputs and passes them to
the Ocarina-generated C code. (Data types)

The Ocarina C code returns computed control outputs (e.g.,
thrust or setpoints) to the wrapper. (Control output)

At the end the wrapper converts control outputs into
simulation-compatible commands and sends them to
Gazebo to actuate the simulated vehicle. (Commands)

This flow ensures seamless integration between the
simulation, the formal model, and the autopilot.

Lastly, it must be said that even though PX4 can be used as
far as hardware specifications go, during the simulation
inside the Gazebo environment the PX4 has shown several
challenges. The biggest challenge is that PX4 SITL doesn’t
support UUVs and Submarine vehicles. For that reason
another SITL was chosen - the ArduSub SITL, used for
simulation purposes only.

Template for Ada User Journal

Maybe in the future an in-depth work can be written on
further developing the PX4 SITL that works specifically for
UUVs, submarines and other underwater vehicles which
are currently unsupported and experimental from PixHawks
side.

5 Verification and optimization

Simulations allow to check and measure the behavior of the
ROV in a given environment for achieving a targeted
mission. Both the internal and external aspects of the ROV
mission can be optimized, e.g. scheduling aspects for the
embedded tasks, path planning characteristics or mission
achievement rate. Alternative versions of the embedded
software can be evaluated and alternative mission design
(path planning and goals) can be simulated. Metrics such as
latency, preemptions can be evaluated for internal aspects.
Values reflecting path length, risk, robustness, energy
consumption can also be defined and used for evaluating
alternatives. All of these architectural and mission design
solutions can be explored using Multiple Objective
Optimization techniques [5].

Those techniques are often based on Evolutionary
algorithms (metaheuristics), leading to MOEA
(Multi-Objective Evolutionary = Algorithms) such as
NSGA-II [6] or PAES [7]. These frameworks have to be
customized according to the different metrics used and the
design space for both internal and external aspects. They
compute a set of trade-offs solutions (a Pareto Set) instead
of a single best solution. This set includes solutions for
which contradictory objectives are optimized. A solution
can be better than another on one aspect (e.g. energy or
distance for this mission solution) while it is worse on
another (e.g targets achievement rate) and conversely (e.g a
more costly mission could allow it to process more targets).

The verification and optimization of the ROV system are
critical for ensuring both reliable behavior and efficient
performance during underwater missions. Given the
complexity of the architecture—spanning sensors,
actuators, control algorithms, and middleware—simulation
plays a central role in validating system correctness before
deployment. Developers are encouraged to rely on the full
simulation loop using Gazebo, ArduSub SITL, and
QGroundControl in conjunction with the AADL-generated
C code to evaluate behavior under realistic environmental
conditions. This simulation-based workflow enables early
identification of anomalies, such as control instability or
synchronization delays, and allows safe iterations without
risking physical hardware.

Future improvements should focus on the optimization of
both internal system behavior and mission-level
performance. Internally, timing parameters such as task
periods, execution times, and thread priorities can be tuned
to minimize CPU load and communication jitter. Metrics
like response latency, number of thread preemptions, and
CPU utilization can be used to assess the quality of
scheduling decisions and control algorithms. Externally,
mission-specific parameters such as energy consumption,
trajectory smoothness, and task coverage should be
evaluated. Using multi-objective optimization

Volume X, Number Y, 2025

methods—such as NSGA-II or PAES—developers can
explore trade-offs between conflicting goals, generating a
Pareto front of feasible system configurations. This allows
informed decisions about balancing efficiency, robustness,
and control performance.

To support future optimization efforts, simulation scenarios
should be recorded and reused systematically. By
preserving Gazebo world configurations, QGC mission
files, and simulation logs, the test environment can be
replicated reliably. Additionally, injecting artificial faults or
environmental disturbances into simulations will help
assess system robustness and fault tolerance. With a
model-based design rooted in AADL, future researchers
and engineers are well-positioned to apply formal methods
and design space exploration techniques to evaluate
alternative architectures and optimize system behavior both
at the component and mission level.

6 Experiments

The experimental phase aimed to validate the end-to-end
functionality of the ROV system, starting from its modular
AADL model to execution in a full simulation loop. The
system architecture was modeled using AADL, where
sensors and actuators were implemented as periodic threads
with well-defined data ports and execution properties. Each
thread's behavior was mapped to a
user_<thread>_entrypoint() function in C, generated using
the Ocarina toolchain.

To simulate sensor feedback without hardware, custom
functions (e.g., temperature_spg(), gps_spg(),
thrusters_spg()) were implemented to generate realistic or
randomized data based on timing and physical
characteristics. These, along with the Ocarina-generated
code, were compiled into a shared .so library using a
CMake-based build system. A Gazebo plugin dynamically
loaded this library, allowing direct execution of the logic
inside a simulated underwater world

The vehicle model in Gazebo responded to control
messages sent through ArduSub SITL and MAVProxy.
QGroundControl was used to define missions such as
moving forward, right, and returning to launch. During
mission execution, simulated sensors sent data at realistic
frequencies (e.g., 1 Hz for temperature, 50 Hz for IMU),
enabling full feedback loops and verification.

Key experimental outcomes confirmed that sensor data
were processed and acted upon correctly, actuator logic
matched mission expectations, and control feedback loops
operated as intended. The modular structure also enabled
quick reconfiguration, such as swapping sensor functions or
modifying execution periods for testing timing constraints.

This simulation framework proved effective for rapid
prototyping, behavioral validation, and mission testing of
the ROV without physical hardware. It lays the
groundwork for more advanced tasks like fault injection,
performance optimization, and real-time validation of
future system extensions.

Template for Ada User Journal

7 Related work

Several related works explore model-based approaches for
robotics, with varying emphasis.

Aloui (2024) focuses on multi-robot behavior using SysML
and ROS, emphasizing real-world prototyping over
physics-based simulation, contrasting with this work’s use
of SITL and Gazebo.

Steffano (2022) highlights virtual prototyping and its
validation against real-world laboratory equipment,
aligning with the goal of bridging simulation and physical
systems.

Jasmine (2020) presents high-level SysML modeling of
autonomous, fault-aware missions, showing how
system-level models can drive resilience. Unlike these, our
approach uses AADL and Ocarina to directly generate C
code, targeting embedded execution in a fully closed-loop
underwater simulation.

Compared to our AADL-based approach, ROS 2 offers a
flexible middleware-centric framework ideal for runtime
communication and distributed control but lacks the formal
architectural modeling and static analysis features of
AADL. While ROS 2 excels in real-time data exchange and
modular integration, our method emphasizes early design
validation, schedulability, and verifiable code generation
through Ocarina. Combining both could enhance
simulation fidelity while preserving system correctness.

8 Conclusion

This project demonstrated a complete model-to-simulation
workflow for an underwater ROV system. Beginning with
modular AADL architecture, it leveraged Ocarina for C
code generation and integrated with Gazebo and ArduSub
SITL for realistic visualization and mission execution.
QGroundControl and MAVProxy were used for planning,
telemetry, and control, closing the feedback loop in a fully
simulated environment.

Future work includes adding underwater dynamics like
current flow and sensor noise, extending the vehicle model
with richer physics, and exploring integration with PX4
SITL once support matures. Continuous integration
pipelines and automated testing can enhance reproducibility
and development speed.

Overall, the approach demonstrates how
architecture-centric modeling, combined with simulation
and code generation tools, can yield a robust development
workflow for complex cyber-physical systems like ROVs,
even in early design phases.

References

[11 K. Alaoui, A. Guizani (2024). An integrated Design
Methodology for Swarm Robotics using Model-Based
Systems Engineering and Robot Operating System

[2] S. Steffano (2022). A Model-based Approach for
Designing Cyber-Physical Production Systems

Volume X, Number Y, 2025

Ada User Journal

(3]

(4]

(3]

(6]

R. Jasmine , L. Stephanie "~ b , C. Jean-Charles , V.
Nicole (2020). MBSE approach applied to lunar
surface exploration elements

Hugues, J., Zalila, B., Pautet, L., & Kordon, F. (2008).
From the prototype to the final embedded system using
the Ocarina AADL tool suite. ACM Transactions on
Embedded Computing Systems (TECS), 7(4), 1-25.

Coello, C. A. C., Brambila, S. G., Gamboa, J. F,, &
Tapia, M. G. C. (2021). Multi-objective evolutionary
algorithms: past, present, and future. In Black Box
Optimization, Machine Learning, and No-Free Lunch
Theorems (pp. 137-162). Cham: Springer International
Publishing.

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T.
(2000, September). A fast elitist non-dominated sorting

(7]

(8]

(9]

Template for Ada User Journal

genetic algorithm for multi-objective optimization:
NSGA-II. In International conference on parallel
problem solving from nature (pp. 849-858). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Knowles, J. D., & Corne, D. W. (2000).
Approximating the nondominated front using the
Pareto archived evolution strategy. Evolutionary
computation, 8(2), 149-172.

Singhoff, F., Legrand, J., Nana, L., & Marcg, L. (2004,
November). Cheddar: a flexible real time scheduling
framework. In Proceedings of the 2004 annual ACM
SIGAda international conference on Ada. pp. 1-8.
November 2004. Atlanta. USA.

Volume X, Number Y, 2025

