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1   Introduction 
When designing underwater robots, reliable simulation is 
essential to master the complexity and cost of physical 
trials. Most existing simulations rely on ad-hoc code and 
are rarely integrated with design methods.  

This project bridges that gap by combining model-driven 
engineering (MDE) techniques with runtime environments 
like Gazebo and ArduSub SITL. We use the Architecture 
Analysis & Design Language (AADL) to model the 
real-time structure and behavior of a Remotely Operated 
Vehicle (ROV), and then generate implementation code 
using Ocarina  [8].  

This code is connected to a Gazebo simulation through a 
C++ plugin, enabling verification of sensor data, actuator 
responses, and mission performance in a virtual underwater 
environment. 

2  Background on AADL 
AADL (Architecture Analysis & Design Language) is a 
standardized modeling language developed by SAE 
(AS5506), used for specifying the software and hardware 
architecture of embedded real-time systems.  

It enables developers to describe components like devices, 
processors, buses, and their interactions, including timing 
constraints and behavioral properties.  

Tools such as OSATE and AADLInspector support 
modeling, analysis, and verification. For this project, 
AADLInspector was used for model validation, and 
Ocarina was used to generate C code for execution.  

Through AADL, the ROV's architecture—including 
sensors, actuators, and control units—was modularly 
specified and enriched with realistic dispatch protocols, 
allowing accurate simulation of periodic threads and 
system scheduling behavior in a real-time context. 

3  ROV AADL modeling 
3.1   ROV description 

A concise description of the ROV would define it as an 
underwater vehicle propelled by five thrusters, designed to 
access areas that were previously difficult to reach in 
submerged environments. The ROV is powered by two 
Bosch batteries and equipped with a range of sensors used 
for monitoring both environmental conditions and the 
vehicle’s own performance. An overview of the ROV’s 
general design is shown in Figure 1. 

 

Picture 1: ROV model 

 

3.2  AADL model of the ROV 

The ROV modeled using AADL represents a modular, 
real-time system architecture designed for underwater 
simulation in environments such as PX4 SITL, Gazebo, and 
QGroundControl. It mirrors the structural organization and 
operational behavior of a real-world Unmanned 
Underwater Vehicle (UUV). 
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The model is organized into three interdependent layers: 
sensing, processing, and actuation. The sensing layer 
includes a magnetometer and a pressure sensor, providing 
orientation and depth data, respectively. These are 
represented as AADL device components with data output 
ports, sampled at realistic update rates (e.g., 100 Hz for the 
magnetometer). 

The processing layer consists of a central processing unit 
defined as a process that hosts a dedicated controller 
process, which includes a stabilization_thread. This thread 
receives sensor inputs and computes control signals for the 
actuators. 

The actuation layer receives data of the type ControlCmd, 
which is defined as a structured data type. In a complete 
implementation, this data would be used to control multiple 
thrusters. This design supports a model-based approach, 
enabling seamless integration into both simulation and 
real-world deployment environments. 

Each key component - controllers, CPU, sensors, and data 
types - is encapsulated within its own dedicated AADL file, 
fostering modularity and facilitating reuse across the 
system. Additionally, the model is fully compatible with the 
Ocarina toolchain, which translates the AADL architecture 
into C source code. This integration ensures deterministic 
behavior throughout the simulation loop.  

Figure 2 below shows the general structure of the 
simulation, without including all the individual 

sensors and actuators. 

 

Picture 2: AADL model of ROV structure 

4  Simulation with Gazebo 

The AADL-modeled ROV system follows a model-driven 
development process integrated with real-time simulation. 
The system architecture—comprising sensors, actuators, 
and control logic—is specified in AADL and compiled into 

C code using Ocarina. This code represents the functional 
behavior and software structure of the ROV. 

To interface with the simulation environment, the generated 
C code is wrapped in a C++ wrapper, allowing it to be 
embedded into a custom Gazebo plugin. This plugin runs 
within Gazebos simulation loop and provides access to 
simulated sensor data and actuator control. 

In Gazebo, the ROV is simulated with realistic underwater 
physics and equipped with virtual sensors like GPS, IMU, 
etc. As the simulation runs, sensor inputs are passed to the 
plugin, which executes the control logic and returns 
actuator commands—thus creating a real-time feedback 
loop. 

The system is further integrated with ArduSub SITL, 
which interprets the plugin's outputs and communicates 
with QGroundControl (QGC) over a MAVLink. This 
setup allows developers to monitor missions, receive 
telemetry, and control the ROV from QGC as if it were a 
physical vehicle. 

This workflow bridges formal modeling and simulation, 
enabling early validation, traceability, and consistent 
deployment behavior. The workflow can be seen in Figure 
3: 

 

Picture 3: Logic behind Gazebo plugin 

Here is the explanation of the data flow in the graph: 

First the sensor data is generated by the simulated 
environment and passed to the wrapper. (Sensor data) 

Secondly the wrapper converts Gazebo sensor data into a 
format matching AADL port types expected by the 
Ocarina-generated C code. (Translated sensor data) 

Thirdly, the AADL system model, implemented as C code, 
computes control outputs which are passed back to the 
wrapper. (Control output) 

After that the wrapper sends the control outputs (e.g., 
desired thrust values, position or velocity corrections) to 
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ArduSub as overrides or direct control inputs. (Updated 
thruster state, position/velocity overrides) 

ArduSub sends low-level actuator commands to Gazebo's 
simulated vehicle, along with estimated state outputs (e.g., 
attitude, velocity) for visualization and synchronization. 
(Actuator commands, estimated state) 

ArduSub sends telemetry data (vehicle state, sensor 
readings, etc.) back to QGC for real-time monitoring and 
display. (Telemetry) 

At last, QGC sends user input or mission instructions to 
ArduSub, including manual joystick commands, 
pre-defined mission plans, or changes in flight mode. 
(Manual commands, mission uploads, mode switches) 

The functionality of the C++ wrapper can be seen 
underneath in Figure 4: 

 

Picture 4: C++ wrapper logic 

The explanation of the data flow in the graph is as follows: 

First, ArduSub sends estimated state and control-related 
sensor data (e.g., velocity, orientation) to the wrapper. 
(Sensors) 

Secondly, Gazebo provides simulated sensor data (e.g., 
GPS, IMU, pressure) to the wrapper. (Status) 

Then afterwards, the wrapper translates ArduSub and 
Gazebo data into AADL-typed inputs and passes them to 
the Ocarina-generated C code. (Data types) 

The Ocarina C code returns computed control outputs (e.g., 
thrust or setpoints) to the wrapper. (Control output) 

At the end the wrapper converts control outputs into 
simulation-compatible commands and sends them to 
Gazebo to actuate the simulated vehicle. (Commands) 

This flow ensures seamless integration between the 
simulation, the formal model, and the autopilot. 

Lastly, it must be said that even though PX4 can be used as 
far as hardware specifications go, during the simulation 
inside the Gazebo environment the PX4 has shown several 
challenges. The biggest challenge is that PX4 SITL doesn’t 
support UUVs and Submarine vehicles. For that reason 
another SITL was chosen - the ArduSub SITL, used for 
simulation purposes only. 

Maybe in the future an in-depth work can be written on 
further developing the PX4 SITL that works specifically for 
UUVs, submarines and other underwater vehicles which 
are currently unsupported and experimental from PixHawks 
side. 

5  Verification and optimization 
Simulations allow to check and measure the behavior of the 
ROV in a given environment for achieving a targeted 
mission. Both the internal and external aspects of the ROV 
mission can be optimized, e.g. scheduling aspects for the 
embedded tasks, path planning characteristics or mission 
achievement rate. Alternative versions of the embedded 
software can be evaluated and alternative mission design 
(path planning and goals) can be simulated. Metrics such as 
latency, preemptions can be evaluated for internal aspects. 
Values reflecting path length, risk, robustness, energy 
consumption can also be defined and used for evaluating 
alternatives. All of these architectural and mission design 
solutions can be explored using Multiple Objective 
Optimization techniques [5].  

Those techniques are often based on Evolutionary 
algorithms (metaheuristics), leading to MOEA 
(Multi-Objective Evolutionary Algorithms) such as 
NSGA-II [6] or PAES [7]. These frameworks have to be 
customized according to the different metrics used and the 
design space for both internal and external aspects. They 
compute a set of trade-offs solutions (a Pareto Set) instead 
of a single best solution. This set includes solutions for 
which contradictory objectives are optimized. A solution 
can be better than another on one aspect (e.g. energy or 
distance for this mission solution) while it is worse on 
another (e.g targets achievement rate) and conversely (e.g a 
more costly mission could allow it to process more targets).   

The verification and optimization of the ROV system are 
critical for ensuring both reliable behavior and efficient 
performance during underwater missions. Given the 
complexity of the architecture—spanning sensors, 
actuators, control algorithms, and middleware—simulation 
plays a central role in validating system correctness before 
deployment. Developers are encouraged to rely on the full 
simulation loop using Gazebo, ArduSub SITL, and 
QGroundControl in conjunction with the AADL-generated 
C code to evaluate behavior under realistic environmental 
conditions. This simulation-based workflow enables early 
identification of anomalies, such as control instability or 
synchronization delays, and allows safe iterations without 
risking physical hardware. 

Future improvements should focus on the optimization of 
both internal system behavior and mission-level 
performance. Internally, timing parameters such as task 
periods, execution times, and thread priorities can be tuned 
to minimize CPU load and communication jitter. Metrics 
like response latency, number of thread preemptions, and 
CPU utilization can be used to assess the quality of 
scheduling decisions and control algorithms. Externally, 
mission-specific parameters such as energy consumption, 
trajectory smoothness, and task coverage should be 
evaluated. Using multi-objective optimization 
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methods—such as NSGA-II or PAES—developers can 
explore trade-offs between conflicting goals, generating a 
Pareto front of feasible system configurations. This allows 
informed decisions about balancing efficiency, robustness, 
and control performance. 

To support future optimization efforts, simulation scenarios 
should be recorded and reused systematically. By 
preserving Gazebo world configurations, QGC mission 
files, and simulation logs, the test environment can be 
replicated reliably. Additionally, injecting artificial faults or 
environmental disturbances into simulations will help 
assess system robustness and fault tolerance. With a 
model-based design rooted in AADL, future researchers 
and engineers are well-positioned to apply formal methods 
and design space exploration techniques to evaluate 
alternative architectures and optimize system behavior both 
at the component and mission level. 

6 Experiments 
The experimental phase aimed to validate the end-to-end 
functionality of the ROV system, starting from its modular 
AADL model to execution in a full simulation loop. The 
system architecture was modeled using AADL, where 
sensors and actuators were implemented as periodic threads 
with well-defined data ports and execution properties. Each 
thread's behavior was mapped to a 
user_<thread>_entrypoint() function in C, generated using 
the Ocarina toolchain. 

To simulate sensor feedback without hardware, custom 
functions (e.g., temperature_spg(), gps_spg(), 
thrusters_spg()) were implemented to generate realistic or 
randomized data based on timing and physical 
characteristics. These, along with the Ocarina-generated 
code, were compiled into a shared .so library using a 
CMake-based build system. A Gazebo plugin dynamically 
loaded this library, allowing direct execution of the logic 
inside a simulated underwater world 

The vehicle model in Gazebo responded to control 
messages sent through ArduSub SITL and MAVProxy. 
QGroundControl was used to define missions such as 
moving forward, right, and returning to launch. During 
mission execution, simulated sensors sent data at realistic 
frequencies (e.g., 1 Hz for temperature, 50 Hz for IMU), 
enabling full feedback loops and verification. 

Key experimental outcomes confirmed that sensor data 
were processed and acted upon correctly, actuator logic 
matched mission expectations, and control feedback loops 
operated as intended. The modular structure also enabled 
quick reconfiguration, such as swapping sensor functions or 
modifying execution periods for testing timing constraints. 

This simulation framework proved effective for rapid 
prototyping, behavioral validation, and mission testing of 
the ROV without physical hardware. It lays the 
groundwork for more advanced tasks like fault injection, 
performance optimization, and real-time validation of 
future system extensions. 

 

7 Related work 
Several related works explore model-based approaches for 
robotics, with varying emphasis.  

Aloui (2024) focuses on multi-robot behavior using SysML 
and ROS, emphasizing real-world prototyping over 
physics-based simulation, contrasting with this work’s use 
of SITL and Gazebo.  

Steffano (2022) highlights virtual prototyping and its 
validation against real-world laboratory equipment, 
aligning with the goal of bridging simulation and physical 
systems.  

Jasmine (2020) presents high-level SysML modeling of 
autonomous, fault-aware missions, showing how 
system-level models can drive resilience. Unlike these, our 
approach uses AADL and Ocarina to directly generate C 
code, targeting embedded execution in a fully closed-loop 
underwater simulation. 

Compared to our AADL-based approach, ROS 2 offers a 
flexible middleware-centric framework ideal for runtime 
communication and distributed control but lacks the formal 
architectural modeling and static analysis features of 
AADL. While ROS 2 excels in real-time data exchange and 
modular integration, our method emphasizes early design 
validation, schedulability, and verifiable code generation 
through Ocarina. Combining both could enhance 
simulation fidelity while preserving system correctness. 

8 Conclusion 
This project demonstrated a complete model-to-simulation 
workflow for an underwater ROV system. Beginning with 
modular AADL architecture, it leveraged Ocarina for C 
code generation and integrated with Gazebo and ArduSub 
SITL for realistic visualization and mission execution. 
QGroundControl and MAVProxy were used for planning, 
telemetry, and control, closing the feedback loop in a fully 
simulated environment. 

Future work includes adding underwater dynamics like 
current flow and sensor noise, extending the vehicle model 
with richer physics, and exploring integration with PX4 
SITL once support matures. Continuous integration 
pipelines and automated testing can enhance reproducibility 
and development speed. 

Overall, the approach demonstrates how 
architecture-centric modeling, combined with simulation 
and code generation tools, can yield a robust development 
workflow for complex cyber-physical systems like ROVs, 
even in early design phases. 
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